Читаем Алгоритм решения 10 проблемы Гильберта полностью

Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом п…

Дмитрий Васильевич Паршаков

Прочее / Самиздат, сетевая литература 18+

Из этой задачи видно, что знаменатель нужно помножить на числитель. Поэтому можно создать следующий алгоритм для произвольных «k» и «а».

Проверим действие этого алгоритма

Пример № 7

Алгоритм работает. Для генерации пифагоровых троек можно использовать как универсальный алгоритм, так упрошенный.

Для чисел кратным 4-ем существует еще один алгоритм. Его можно использовать для упрощенного нахождения пифагоровых троек.

Пример № 8

Получилась уже известная тройка.

<p>Доказательство теоремы Ферма</p>

Постановка вопроса о разрешимости диофантовых уравнений подразумевала также доказательство теоремы Ферма[5]. Почему же не может существовать целочисленные значения для уравнений вида

При

Собственно от формулы Пифагора это уравнение отличается только значением степени, поэтому формула Пифагора принадлежит к этим уравнениям.

А раз она принадлежит к данным уравнениям, то для нахождения решений можно применить универсальный алгоритм. Для этого нужно это произвольное уравнение перевести в степень 2

Упростим уравнение

Теперь можно применить одну из формул алгоритма

Для нахождения значений этого уравнения, кратностью можно пренебречь, так как в любом случае существует исходная тройка взаимно простых чисел. Поэтому применим формулу исходного алгоритма

По условиям алгоритма, должно получиться равенство

Предположим, что такое равенство возможно. Но коэффициент числа «b» меньше 1, так как сумма, которую представляет число «с», больше слагаемого, которое представляет число «b».

Из этого следует что

что соответствует утверждению Ферма о невозможности существования натуральных чисел, и не соответствует условиям алгоритма, это наглядно показывает ,что не существует целочисленных решений для уравнений вида

При

А так как в приведенных выше примерах доказано, что алгоритм является верным не только для натуральных, но и для всех рациональных чисел, то можно уверенно утверждать: не существует даже рациональных решений для уравнений этого вида.

Итак, подведем итог этого исследования.

1) Доказано, что существует универсальный алгоритм или, как указано в 10-й проблеме Гильберта, единый способ, при помощи которого возможно после конечного числа операций установить разрешимо или нет уравнение вида

в целых рациональных числах

2) Доказано, что при помощи универсального алгоритма решение в натуральных и рациональных числах возможно для этого уравнения при n=2

3) Доказано, что для уравнений

При

Решений в натуральных и рациональных числах не существует.

Сноски

[1] Ю. В. Матиясевич, Десятая проблема Гильберта – М., Наука, 1993

[2] Давид Гильберт (23.01.1862 – 14.02.1943) математик-универсал, внес значительный вклад в развитие многих областей математики.

[3] Диофант Александрийский древнегреческий математик, живший в 3-ем веке н.э.

[4] Пифагор Самосский ( 570-490г до н.э.) древнегреческий философ, математик.

[5] Пьер де Ферма (17.09.1601 – 12.01. 1665) французский математик-самоучка.

Похожие книги