Читаем Справочное пособие по цифровой электронике полностью

Справочное пособие по цифровой электронике

Систематизированы сведения по применению в микропроцессорной технике и микроЭВМ различного рода цифровых интегральных микросхем…

Майкл Тули

Техника / Радиоэлектроника 18+

Рис. 1.1.Нумерация контактов на корпусах интегральных схем. Контакт 1 находится слева от выемки; иногда его отмечают течкой.

Здесь изображен вид микросхем сверху, т. е. так, как они выглядят на печатной плате со стороны компонентов. Такой вид, наверное, самый естественный, но все же иногда нумерация контактов вызывает путаницу. Контакты микросхем нумеруются последовательно, начиная с выемки, в направлении против часовой стрелки.

Например, при рассмотрении 14-контактного корпуса сверху контакты 1 и 14 находятся соответственно слева и справа от выемки.

Идентификация. При знакомстве с интегральными схемами сразу же возникает вопрос об их идентификации или маркировке. Чтобы помочь нам решить этот вопрос (а иногда — чтобы запутать нас!), фирмы-изготовители наносят маркировку на наружной части корпуса. Обычно она состоит из номера типа микросхемы (включая общепринятое кодирование), названия фирмы (обычно в виде начальных букв) и классификации микросхемы.

Довольно часто маркировка содержит информацию о типе конструкции, дате выпуска и специальных характеристиках микросхемы. К сожалению, эта в принципе полезная информация часто приводит к путанице из-за отсутствия единого стандарта.

1.2. Логические семейства

Каждая интегральная схема относится к тому или иному логическому семейству (серии). Термин «семейство» просто означает тот вид полупроводниковой технологии, который используется при изготовлении микросхемы. Именно технология определяет такие важнейшие характеристики конкретной микросхемы, как напряжение питания, рассеиваемая мощность, скорость переключения и помехоустойчивость.

В настоящее время наиболее распространены два основных логических семейства: КМОП (комплементарная, металл-оксид-полупроводник) и ТТЛ (транзисторно-транзисторная логика). Второе семейство имеет несколько подсемейств, включая популярный вариант маломощной ТТЛ с диодами Шотки (LS-TTL). Для любознательных читателей на рис. 1.2 показаны внутренние схемы двухвходовых элементов И, выполненных по КМОП- и ТТЛ-технологиям. Несмотря на очевидное их различие, обе схемы выполняют одну и ту же логическую функцию.

Рис. 1.2.Внутреннее устройство двухвходовых логических элементов И, выполненных по КМОП- и ТТЛ-технологиям:

а — КМОП-элемент; б — ТТЛ элемент

Из обычных ТТЛ-микросхем наиболее широко представлено семейство 74. Маркировка микросхем этого семейства начинается с цифр 74, например 7400, 7408, 7432 и 74121; его еще часто называют стандартным ТТЛ-семейством. Разновидности аналогичных микросхем малой мощности с диодами Шотки имеют в середине буквы LS, например 74LS00, 74LS08, 74LS32 и 74LS121.

Популярные КМОП-микросхемы образуют часть семейства 4000, и их номера начинаются с цифры 4, например 4001, 4174, 4501 и 4574. Иногда маркировка КМОП-микросхемы начинается не с цифры, а с буквы. Буква А обозначает устаревшую (небуферированную) серию, а буква В — улучшенную (буферированную) серию. Комбинация UB обозначает небуферированную микросхему серии В.

В некоторых случаях в середине кода ТТЛ-микросхем встречаются буквы, приведенные в табл. 1.2.

1.3. Блоки питания

Большинство ТТЛ- и КМОП-семейств рассчитаны на работу с напряжением питания +5 В. Для ТТЛ-микросхем необходима довольно жесткая стабилизация напряжения, обычно ±5 % (т. е. диапазон допустимых напряжений составляет от 4,75 до 5,25 В). Тем не менее многие ТТЛ-микросхемы могут работать и при большем разбросе питания, например от 4 до 5,5 В. В частности, одна из фирм рекомендует использовать в своих изделиях для питания ТТЛ-микросхем три последовательно включенные сухие батареи с напряжением 1,5 В каждая. Неудивительно, что одной из наиболее частых причин отказа в этих изделиях оказывается «севшая» батарея.

Несмотря на то что логическая функция элемента остается одной и той же при напряжении питания 4 и 5 В, переключательные свойства элемента зависят от напряжения питания. При его уменьшении значительно возрастает задержка распространения, т. е. время прохождения изменения логического значения со входа на выход. Во многих устройствах это обстоятельство несущественно, но такие схемы, как счетчики и делители частоты, при понижении напряжения питания работают неустойчиво.

Сделаем замечание и о предельном значении напряжения питания для ТТЛ-микросхем: абсолютное максимальное напряжение составляет +7 В. Даже при небольшом превышении этого значения ТТЛ-микросхема сразу же выходит из строя.

Похожие книги