Читаем Новые космические технологии полностью

Новые космические технологии

В книге представлены различные способы создания движения тел, то есть, изменения положения объекта как в пространстве, так и во…

Александр Владимирович Фролов

Техника / Технические науки 18+

В главе о нанотехнологиях мы рассмотрим метод, позволяющий создать движущую силу без затрат топлива, за счет специального рельефа поверхности наноматериала, обеспечивающего отбор кинетической энергии молекул воздуха, или другой окружающей среды. Данный материал назван «силовой активный материал». Наличие ветра, в данном случае, не имеет значения, так как при масштабах около 100 нанометров, можно сказать, что «ветер есть всегда». Молекулы воздуха, при обычном атмосферном давлении и комнатной температуре, хаотически двигаются со скоростью 500 метров в секунду, но каждая из них движется прямолинейно, без столкновений, только на небольших участках своей траектории, длиной примерно 50 – 100 нанометров. Это движение можно использовать, создав, с помощью современных нанотехнологий, специальный упорядоченный рельеф поверхности.

Итак, известные нам принципы создания движущей силы для ускорения транспортного средства работают за счет взаимодействия с окружающей средой, в соответствии с законами сохранения импульса и энергии, и другого не дано. Отдельно можно отметить, что выполнение данных законов не требует выброса реактивной массы за пределы корпуса транспортного средства, в том числе, и в ракетной и космической технике. Существуют известные технические решения, позволяющие получить реактивный макроимпульс, действующий на корпус транспортного средства, при выбросе сгораемого топлива из движителя в своеобразный «глушитель», находящийся внутри корпуса транспортного средства. В данном «глушителе», микроимпульсы частиц реактивной струи топлива теряют свою кинетическую энергию, и она переходит в окружающую среду в виде теплового излучения. При таком способе создания движущей силы, охлажденная рабочая реактивная масса вещества может быть возвращена в камеру сгорания, где она будет использоваться в новых циклах «нагрева – выброса – охлаждения – возврата».

Рассматривая движение в воздухе, в воде или на поверхности опоры (дороги), мы можем описать почти все известные нам конструкции движителей транспортных средств. Все они являются реактивными или активными движителями. Не являются исключением и так называемые инерциоиды – устройства, использующие для создания движущей силы свойство тел, которое мы обычно называем «инерциальной массой». В главе про инерциоиды, мы рассмотрим физический механизм возникновения инерции при ускоренном движении тел и варианты его практического использования, с точки зрения эфирной теории.

Отдельно от активных и реактивных методов, имеет смысл показать такие способы создания движущей (подъемной) силы, которые обусловлены градиентом давления среды. Перепад давления заставляет воздушный шар подниматься вверх. Теория воздухоплавания проста: окружающая среда имеет градиент плотности, а поскольку плотность среды внутри шара меньше, чем снаружи, то давление окружающей среды вытесняет шар вверх. Аналогично, сила Архимеда заставляет всплывать тела меньшей плотности, чем вода. Градиент давления в среде, в данных случаях, создает гравитационное поле планеты. По этой причине, эти силы действуют в вертикальном направлении.

Разность давления среды возникает также при относительном движении крыла, имеющего профиль Жуковского – Чаплыгина, и окружающей среды, что создает подъемную силу, действующую на крыло со стороны среды. Градиент давления среды работает похожим образом в известном «эффекте Магнуса», который будет рассмотрен в отдельной главе. Силы такой природы могут быть направлены в любую сторону, что выгодно отличает данный метод от методов воздухоплавания.

Физика, как и все естествознание, есть попытка изучить и понять каким образом устроен, то есть, создан, наш мир. В теологии много сказано о тройственной природе всего сущего. Используя метод аналогий между явлениями в трех физических средах, переходя от гидродинамики и аэродинамики к эфиродинамике, мы можем сохранять терминологию, и говорить об эфире разной температуры, разной плотности, которая обуславливает определенное статическое давление. Как и в газодинамике, в эфиродинамике удобно также использовать понятие о «динамическом давлении», которое также зависит от скорости потока. Полагая, что в эфиродинамике выполняется закон Бернулли о полном давлении, мы имеем возможность конструировать технические устройства – движители, работающие не в воздухе или воде, а в вакууме (эфирной среде). При таком подходе, от воздухоплавания мы можем перейти к эфироплавательным аппаратам.

Конструкции эфирообменных движителей могут использовать электрические силы, магнитные явления, а также тот факт, что скорость распространения электромагнитных волн не является бесконечно большой. Это позволяет получить движущую силу за счет электрических и электромагнитных взаимодействий, поскольку они происходят не в пустом месте, а в эфирной среде, имеющей известные физические свойства.

Похожие книги